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Abstract

The ability to accurately and quickly locate an individual, or a dismount, is useful in a

variety of situations and environments. A dismount’s characteristics such as their gender,

height, weight, build, and ethnicity could be used as discriminating factors. Hyperspectral

imaging (HSI) is widely used in efforts to identify materials based on their spectral

signatures. More specifically, HSI has been used for skin and clothing classification and

detection. The ability to detect textiles (clothing) provides a discriminating factor that can

aid in a more comprehensive detection of dismounts.

This thesis demonstrates the application of several feature selection methods (i.e.,

support vector machines with recursive feature reduction, fast correlation based filter) in

highly dimensional data collected from a spectroradiometer. The classification of the data

is accomplished with the selected features and artificial neural networks. A model for

uniquely identifying (fingerprinting) textiles are designed, where color and composition

ard deternimed in order to fingerprint a specific textile. An artificial neural network is

created based on the knowledge of the textile’s color and composition, providing a

uniquely identifying fingerprinting of a textile. Results show 100% accuracy for color and

composition classification, and 98% accuracy for the overall textile fingerprinting process.
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TEXTILE FINGERPRINTING FOR DISMOUNT ANALYSIS IN THE VISIBLE,

NEAR, AND SHORTWAVE INFRARED DOMAIN

I. Introduction

Dismount detection is the process of locating and identifying a person based on prior

knowledge of the target. A dismount is defined as an individual who is on the

ground, traveling on foot, and not in a vehicle [30]. Current technology has enhanced the

capability to identify and track dismounts [30]. Applications of dismount detection

include search and rescue, surveillance, and target identification [14].

Prior knowledge of a target is necessary for accurate detection and identification. When

searching for a dismount of interest (DOI), it is crucial to know certain inherent

characteristics such as height, weight, gender, age and ethnicity. Other pertinent

information, e.g., the clothing currently worn by a dismount, can provide valuable insight

in detection and identification. Textile fingerprinting can be useful as a discriminating

factor in identifying a DOI. This chapter introduces the problem statement of the thesis as

well as the scope and limitations. The methodology, data, and results are also briefly

discussed.

1.1 Background

Some of the most common human identification techniques include iris analysis, face,

fingerprint and voice recognition [33, 63]. These biological features are popular due to

their individual uniqueness; however, these identification techniques require either a close

up image or a physical sample. The methods required for the previously mentioned

identification techniques may not be possible, especially if the DOI is avoiding detection.
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Recent studies have explored the detection of dismounts based on the discrimination of

hair, skin and clothing with hyperspectral data [3]. Collecting information surreptitiously

can be advantageous to the detectors (people trying to detect a dismount) in certain

endeavors. Detecting a dismount passively prevents the dismount’s awareness of detection

and may be the only possible means to collect the information. An advantage passive

detection identification methods have over others is that the distance between the target

and the sensor can be nondeterministic. As long as the sensor has visual contact with the

target, information can be gained and used for the purpose of detecting or identifying a

dismount.

To illustrate the usefulness of dismount identification, two examples will be discussed.

The first example involves a fugitive running from authorities. This fugitive is actively

avoiding being detected. Visual identification or face recognition is unavailable because

the fugitive has a hooded sweatshirt or a baseball cap on. Skin detection is also

complicated by gloves and long sleeves as well as pants. Physical attributes, such as height

and build, are negligable because the fugitive is in a highly crowded area. Assuming that

the detectors know what the fugitive is wearing, the detector will be able to be identify the

fugitive by classification of textiles. Because textile identification is achieved through

passive methods, the fugitive will not be aware that he or she has been detected.

The second example involves a lost hiker in the woods. In this case, the dismount is not

actively avoiding detection; however, it is highly likely that the terrain and the

surroundings will complicate traditional detection methods. Clothing detection will

enable the detectors to separate that individual from his or her surrounding environment,

even if the dismount is immobile.

Accurate identification of dismounts is useful for multiple applications including

intelligence, surveillance and reconnaissance (ISR). The motivation behind textile

detection and identification is based on the fact that the largest imaged surface area of

2



dismounts is typically clothing. Two obvious characteristics of textiles are their color and

material composition (textile make). A red 100% cotton shirt and a blue 100% cotton shirt

are separable based on their color alone. A green 100% cotton shirt and a green 100%

polyester shirt are differentiable due to their material composition. However, color and

composition alone do not give enough information to uniquely identify (fingerprint) a

subject.

Dismount detection using clothing is complicated when two dismounts are wearing the

same clothing. The spectral signatures of two textiles of identical color and composition

are non-separable. An example where multiple dismounts could exist wearing the same

colored and type of clothing at the same time would be a sporting event. Fans tend to wear

identical jerseys of the home or away teams, mass produced from only a few

manufacturers. Two possible scenes for dismount detection are portrayed in Figure 1.1.

(a) (b)

Figure 1.1: Two example scenes of dismount detection. The image on the left (a) shows

a crowded street view of the winter, where the only visible skin of the dismounts is the

face [6]. The image on the right (b) shows dismounts at a sporting event, all wearing

similar colors and jerseys manufactured from a few of the same companies [21].

The goal of this thesis is to identify various materials and blends of textiles as well as

to uniquely identify textiles of the same type. Even if two articles of clothing are

3



manufactured by the same company and appear identical, the difference exists in the

maintenance, maintainability, and environmental factors of the two articles. These

differences will manifest in a distinguishable difference of their spectral signature. This

thesis focuses on fingerprinting textiles for the purpose of the detection and identification

of dismounts.

1.1.1 Hyperspectral Data.

Detection of skin and clothing has been accomplished through the use of hyperspectral

imaging (HSI) [14, 55]. HSI collects high resolution of a material’s spectral radiance over

a large spectral range [7]. The use of HSI is effective in classifying different materials,

because all materials absorb, reflect, or emit electromagnetic radiation when exposed to

light [60]. Different materials produce distinct spectral information known as their

spectral signature [7]. Therefore, hyperspectral imaging provides distinct information for

identification of various materials.

HSI captures information in two spatial dimensions across hundreds of spectral

channels [60]. Typically an HSI has small sampling intervals of 1nm to 15nm and covers

the spectral range from the visible wavelength through the short-wave infrared

wavelength [7]. A hyperspectral imager produces a highly dimensional data set,

commonly referred to as a hypercube [60]. HSI data can provide detailed and valuable

information when they are processed efficiently and effectively.

1.1.2 Feature Selection.

Hyperspectral imagers create data sets that are extremely large and difficult to process,

making it necessary to reduce the data size for effective material identification. A typical

spectrum from a spectroradiometer contains up to 2100 dimensions. High dimensional

data are known to contain redundant features that interfere with the classification

processes [36]. Extracting only the wavelengths that are crucial to accurate material

identification is important with hyperspectral data.
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A feature selection process extracts a meaningful set of features providing adequate

information for identification of a material [42]. The work in this thesis focuses on

determining a feature selection method and feature set that produce a ‘fingerprint’

capability of textiles.

1.2 Problem Statement

Recent advances in sensor technology has lead to in-depth research in skin and clothing

detection in efforts to build a more accurate method for dismount detection [60]. However,

current methods to detect clothing are inadequate for the use of uniquely identifying a

dismount.

This thesis builds on an overlying research question: “Is it possible to uniquely identify

or fingerprint textiles?”

In order to answer this question, a set of more specific questions must be answered:

“What makes a textile unique?” “What features (wavelengths) from the spectral

reflectance of textiles are necessary for identification?” “Is there a global set of features

that can be used for all types of textiles?” “What kind of feature selection and

classification methods are best fit for this data set?”

1.3 Scope and Limitations

This thesis focuses on fingerprinting different types of textiles. The goal for dismount

identification is to be able to uniquely identify a person in a variety of environments.

Textile identification will be an integral part of accurate and robust dismount detection.

Data used in this work are collected using a spectroradiometer with a contact probe,

rather than using an actual HSI system. Because the contact probe minimizes outside

noise and atmospheric effects, the data collected are treated as truth data. The assumption

that these sets of truth data do not need to be corrected for noise, illumination variation or

atmospheric effects is made. Feature selection and classification for uniquely identifying
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textiles are accomplished using these truth data sets. All textile samples used in this thesis

are one solid color without any stripes or patterns. The dye process or the thickness of the

textiles are not considered as variables.

1.4 Methodology

Data are collected using a contact probe of a spectrometer, ASD FieldSpec ® 3 Hi-Res

Spectroradiometer [34]. The spectroradiometer collects a material’s spectral signature

from the visible wavelengths to the short wave infrared wavelengths. All samples are

represented as a continuous spectrum from 350nm to 2500nm. For each sample of fabric

used, 100 samples are collected. Each sample is an average of 10 continuous instances of

the material’s spectral reflectance.

This research focuses on differentiating between textile materials of the same make. In

order to accomplish this goal, the spectral data of different pristine fabrics are collected.

Fabric swatches are machine washed to create separation from the pristine samples, taking

measurements after washing. A different set of the same fabric swatches are washed and

machined dried, also taking spectral data between cycles.

Several feature selection methods, including ReliefF, Bhattacharyya, fast

correlation-based filter (FCBF), and Support Vector Machines with the aid of Recursive

Feature Elimination (SVM-RFE), are performed on textile reflectance data collected.

Classification methods including SVM, radial basis function (RBF) networks and

multilayer perceptrons (MLP), are tested on the selected feature sets. The methodology is

motivated from the fact that clothing articles are affected from the different wear and tear

and maintenance techniques. Washing machines and dryers alter the spectral signatures of

textiles, making it possible to uniquely identify a fabric of interest (FOI).
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1.5 Results

When an FOI is evaluated by the first stage of the textile fingerprinting model, the color

and the composition of the current FOI are classified and learned. With this knowledge, an

ANN is trained specifically for identifying and discriminating against the similar colors

and the composition of the FOI in question. This textile fingerprinting model is illustrated

in Figure 1.2.

Each layer of the textile fingerprinting model is built with ANNs with MLPs. The

relevant features are selected by SVM-RFE and FCBF. The classification for color and

composition of textiles render a 100% accuracy when validated. The fingerprinting

averaged accuracy with three FOIs is calculated to be 98%.

1.6 Overview

Chapter 2 is a review of important background concepts regarding clothing detection

and research efforts made in this area. Related works accomplished in dismount detection,

feature selection and classification using HSI data are presented. Feature selection and

classification methods used to fingerprint clothing are described in Chapter 3. Chapter 4

reports the results of the data analysis accomplished for this thesis. Multiple feature

selection and classification methods are compared to determine which methods work best.

Chapter 5 summarizes the work done in this thesis and recommendations for future work.
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Figure 1.2: Visual diagram of the textile fingerprinting process. Initial screening collects

features needed to classify the FOI into a specific color and composition. Secondary

screening collects features according to the classification. An ANN is built with features

collected in the secondary screening. The ANN is used for reacquisition/identification of

the FOI.
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II. Background

This chapter reviews research explaining certain concepts in textile fingerprinting

and recent advances in this field of work. Central ideas in dismount detection,

hyperspectral data classification, target detection, clothing detection, material

identification and fingerprinting methods are presented. Background information on

relevant concepts, algorithms, processes and procedures in hyperspectral data analysis are

discussed.

Section 2.1 presents a broad view of dismount detection. Specific examples and

explorations are presented in Section 2.1.1. Section 2.2 discusses hyperspectral imaging

(HSI) and its applications. The basic theory of feature selection is reviewed in Section 2.3

with current feature selection methods in Section 2.3.1. Section 2.4 explains the recent

work accomplished regarding clothing detection and classification. Characteristics of

fabrics such as reflectance and transmittance are discussed in Section 2.5. Finally, in

Section 2.6, other related works in material detection are reviewed.

2.1 Dismount Detection

Detection of humans, also known as dismount detection, has utilities in multiple

applications, both civilian and military. Crowd monitoring, search and rescue, weapon

targeting, industrial safety, security systems, and biometric identifications are a few of the

most prominent applications of dismount detection. A variety of sensors can be used for

dismount detection: electro-optical cameras, HSI, thermal infrared sensors and synthetic

aperture radar (SAR) [57]. Dismount detection can be segmented into temporal, spatial,

and spectral detection techniques [3]. Temporal techniques use SAR and the unique

motion of the human frame; dismounts in motion are detected by their distinctive

breathing and limb movements [57]. Spatial techniques involve searching for human
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shaped geometric figures in a scene [30]. Dismounts are detected using a physiological

dismount model of 12 different body parts [30]. To reduce the search space, spatial

dismount detectors often search for areas that contain skin colored pixels [30]. Spectral

dismount detection techniques exploit the known spectral signature of dismounts such as

the unique reflectance of skin, hair, or clothing [3].

2.1.1 Related Works in Dismount Detection.

Rangaswamy et al. [57] present an approach to detect dismounts using synthetic

aperture radar (SAR) and the unique signatures of dismounts present in SAR images. A

study by Brooks [10] focuses on the full body detection approach using histograms of

oriented gradients (HOG) features along with linear support vector machines (linSVM). A

survey of the existing monocular dismount detection techniques is presented by

Enzweiler et al. in [20].

Blagg [5] reports on a new detection approach that uses hyperspectral data in

conjunction with thermal imaging to detect humans from other materials and the

background. Thermal imaging exploits the temperature differential of dismounts to their

surrounding. However, thermal imaging alone is not ideal since other heat sources, such

as animals, may be present in the scene confusing the system. Blagg uses a matched filter

algorithm which is performed on a spectral data set of a scene to search for clothing [5].

The results of the matched filter are thresholded and combined with the thermal data to

give a final probability map for the scene under inspection [5].

An algorithm, denoted the Normalized Difference Skin Index (NDSI), uses the

relationship between the spectral reflectance of skin at 1100nm and 1400nm for a

computationally efficient skin detection [55]. NDSI is able to detect pixels of skin in a

given scene without significant false alarms from objects that are skin-colored or contain

water based liquid (vegetation and dirt) similar to the human skin [55]. This algorithm is

10



efficient at detection of skin, however, it is unable to uniquely identify a specific dismount

from other dismounts.

Vehicle classification and recognition has also received a lot of attention during recent

years. Roller et al. [58] uses a 3D generic vehicle model, parameterized to express

different vehicles such as a sedan, station wagon, van or a bus. A simple sedan model and

a probabilistic line feature grouping scheme are used for fast vehicle detection [41].

In [24], Duda et al. address the problem of vehicle matching and fingerprinting utilizing

the edges of vehicles as features of discrimination.

2.2 Hyperspectral Imaging

HSI involves collecting and processing high resolution information across the

electromagnetic spectrum [60]. Hyperspectral data typically include information from the

visible spectral band to the shortwave-infrared band [60]. Hyperspectral data collection

produces a continuous, highly dimensional data set of the spectral reflection [60]. The

imaging spectroscopy principles, for remote sensing, are illustrated in Figure 2.1.

Hyperspectral imaging is a passive analysis technique that can be used to obtain

information from objects. This technique can be used to distinguish or identify materials

based on their unique characteristics across the electromagnetic spectrum. HSI can detect

signs of degradation, enhance the visibility of obscured features, or study the effect of

environmental conditions on an object [49]. These ‘fingerprints’ are known as spectral

signatures that enable identification of specific materials. Hyperspectral imaging is used in

a variety of applications including chemical imaging in pharmaceutical research and

industry, analysis of meat qualities, forensics, cosmetics and art [8, 18, 46, 56].

While HSI is highly informative, it requires excessive processing time and memory

allocation to utilize because of its high dimensional nature. To reduce processing time,

features that contain significant discriminating elements of a data set are selected [50].
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Figure 2.1: Principle of imaging spectroscopy [60]. Radiance from each spectral dimension

is collected as a layer of the hypercube of the imaged scene. The three plots on the right

hand side depict what the radiance of a single pixel of the image may show, depending on

the material type.

2.3 Feature Selection Methods

The goal of a feature selection method is to preserve the classification capability, while

minimizing the dimensionality of the data [14]. High-dimensional data sets often contain

redundant and dependent features as well as missing data wasting computational resources

as they provide no new information to the classification capability [60]. Therefore, it is
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crucial to find the most appropriate features that contain significant information for a

given classification problem [61].

Dash and Liu [17] classify feature selection into four different definitions: idealized,

classical, improving and approximating. The idealized method finds the smallest available

feature set that is sufficient to classify or detect given targets [42]. The classical approach

selects an optimal subset of m features from an n-feature set [17]. Improving prediction

accuracy method focuses on selecting a small subset of features and decreasing the size of

that set without decreasing the classification accuracy [45]. The approximating original

class distribution approach selects the smallest possible feature set, resulting in a class

distribution that is as close as possible to the original class distribution [45].

For a feature set of size N, there will be 2N subsets of the feature set available [17].

Looking for the best subset using every combination of features may be exhaustive and

too costly even with a medium sized feature set. Dash and Liu [17] state that all feature

selection methods have four basic steps: generation procedure, evaluation function,

stopping function and validation procedure.

The generation procedure produces subsets of features for evaluation using three

different search methods: complete, heuristic and random [17]. A complete search

exhaustively searches the data space in order to find the optimal subset [17]. A heuristic

search uses a function in order to determine the cost or ‘goodness’ of a feature [17]. The

cost is calculated at every iteration and determines if a feature is selected or rejected. A

random search randomly evaluates a feature and uses a function to determine if that

feature should be selected, similar to the heuristic search [17].

An evaluation function measures the ‘goodness’ of a subset selected by the generation

procedure [17]. An evaluation function will measure the discriminating ability of a feature

or a subset to distinguish the different classes [17]. The evaluation function retains the

best subset according to the goodness measurements. The authors Dash and Liu [17]
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classify the evaluation functions into five categories: distance, information (or

uncertainty), dependence, consistency and classifier error rate. Distance measures use the

separability of features and is a metric for describing how ‘far away’ or ‘close to’

elements are from each other. A widely used example of a distance measure would be the

Euclidean distance measure. Information measures determine the information gain from a

feature; for example, entropy, which is a measure of the uncertainty in a random

variable [17]. Dependence measures makes use of the correlation between a feature and a

specific class [17]. The correlation between classes can be utilized to determine which

classes are close, or related to each other. The correlation between features indicate the

degree of redundancy of the features. Consistency measures determine the minimally

sized subset satisfying the acceptable inconsistency rate set by the user [17]. The classifier

is the evaluation function for the classifier error rate measure, resulting in high accuracy

levels as well as high computational costs [17].

The stopping criterion keeps the feature selection process from running exhaustively or

redundantly through the groups of subsets [17]. A stopping criterion can be a preset

number of features/iterations, or the goodness value of a subset based on the

addition/deletion of other features [17]. The validation procedure is not part of the feature

selection, but is necessary for any feature selection method. It tests the validity of the

selected subset by comparing results with previous findings by other feature selection

methods, performing different tests, or applying the subset to a real world data set [17].

Langley [49] divides feature selection methods into three groups based on the feature

selection and evaluation strategy: embedded, filter and wrapper. The embedded method

determines a features’ goodness during the feature selection process [49]. The feature

selection process is embedded within the basic induction algorithm [49]. The filter method

introduces a separate preprocessing step based on the general characteristics of the

training set before the basic induction step that will select features [37]. The wrapper
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method uses the inductive algorithm as the evaluation function [49]. Feature selection

methods that use the classifier error rate as an evaluation measure are considered wrapper

methods [17]. This method is based on the argument that the induction method will

provide a better estimate of accuracy than a separate measure that might have a different

inductive bias [49].

2.3.1 Current Methods for Feature Selection.

A popular method of feature selection is the Principal Component Analysis (PCA).

PCA is a dimension reduction process that uses an orthogonal transformation to convert a

set of correlated variables or features into a lower dimensional data set of uncorrelated

features [38]. Principal components are computed by using the eigenvectors and

eigenvalues of the covariance matrix of the data set as represented in Algorithm 1 [15].

Algorithm 1: Computing PCA of a given data set [15].
Input: x = [x1, x2, ...xn]: training examples

m: number of principal components to keep

Output: PC = []: principal components

1 xz = x −mean(x): zero mean the data

2 Σ = cov(xz): calculate covariance matrix

3 calculate eigenvalues, eigenvectors of Σ

4 rank eigenvalues (largest to smallest)

5 PC = m largest eigenvalue/vector pair

6 return principal components PC

7 Project data onto selected principal components

Only a small number of eigenvectors are necessary to reduce the dimension of the data

while maintaining classification accuracy. This group of chosen eigenvectors form a new
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basis for the data set [15]. The data are projected by the selected eigenvectors into a

feature space.

The eigenvectors characterize the direction of the variance of the data whereas the

eigenvalues are the characteristic value of their corresponding eigenvectors [1]. The larger

the eigenvalue, the more important the corresponding eigenvector or principal

component [15]. Overall, PCA is able to condense a large data set with n dimensions into

a data set of m dimensions where m < n, maximizing the covariance and reducing the

redundancy of a particular data set [1].

Although PCA is a useful tool for dimension reduction and data compression, it is not

typically suitable for feature extraction when attempting target detection or

classification [13]. Although easy to implement, PCA is inept at extracting discriminating

features from certain data sets as the higher order components do not always retain the

discriminatory data of the original feature set [13].

Learning vector quantization (LVQ) is a neural learning algorithm that uses prototype

vectors to determine a decision boundary for classification [44]. Prototype vectors are the

trained quantities in an LVQ that learn a given representation of the assigned class [4].

The LVQ algorithm iterates over the training data and updates the prototype’s position

while defining class boundaries [4]. Generalized relevance learning vector quantization

(GRLVQ) is a variant of LVQ using gradient-descent algorithms to provide feature

ranking information based on a feature’s discriminatory capability [26]. Supervised

learning algorithms such as LVQs are desirable because they are robust to noisy samples

and incomplete data [4].

The Bhattacharyya coefficient method is a feature selection method that utilizes the

probability distributions of the features [15]. The Bhattacharyya coefficient measures the

area of overlap between distributions of two different features. The Bhatacharyya

coefficient measures the separability between histograms. The coefficient is calculated as:
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Bn =

K∑
k=1

√
PX(k)PY(k), (2.1)

where Bn is the Bhattacharyya coefficient for feature n and its instance k, PX(k) is the

probability of k for probability distribution function (PDF) of X, PY(k) is the probability of

k for PDF Y and K is the number of bins in both histograms [16].

The Bhattacharyya coefficient (Bn) has a maximum value of 1 when the two

distributions being compared completely overlap [15]. The coefficient becomes smaller as

the separation between the two distributions get larger. The coefficient has a 0 value when

there is no overlap of the distributions [15]. A visual representation of the coefficients can

be seen in Figure 2.2. Three sets of distributions are shown: one where the two

distributions nearly overlap completely, one where they overlap half way, and one with no

overlap. The corresponding Bhattacharyya coefficient can be seen alongside each graph.

The Bhattacharyya coefficient is calculated for every feature of the data set. Features with

smaller coefficients are selected when reducing the dimensionality of a given data set and

still preserve class discrimination.

Relief is a feature ranking method that uses a distance measure to determine the

weights for every feature [15]. The Relief algorithm was motivated by nearest-neighbors,

aligning features of instances of the same class and differentiating from features of the

other class [42]. Relief is a two class binary feature selection method. ReliefF is adapted

for multiclass problems as well as noisy and incomplete data sets [42].

The Relief algorithm assigns a weight to each feature which denotes the relevance of a

feature regarding the discriminability of the data [15]. Reilef randomly selects a sample of

instances and finds its nearest hit and nearest miss instances based on a selected distance

measure [15]. The nearest hit is the instance that has the minimum distance to the selected

instance of the same class as the selected instance. The nearest miss is the instance with

the minimum distance to the selected instance of a different class as the selected
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Figure 2.2: Three different distribution sets with corresponding Bhattacharyya coefficients.

The red and blue graphs are the PDFs of the two distributions being compared. The left

most graph has the most overlap with Bn ≈ 1, the middle graph has half overlap with

Bn ≈ 1/2, and the last graph has no overlap with Bn ≈ 0.

instance [15]. The feature weights are initialized to zero initially and are updated by

evaluating the nearest hit and nearest miss distances from the sample instance [15]. Relief

works well for noisy and moderately correlated feature sets both for nominal and

continuous data. Relief, however, does not filter out redundant or highly correlated

features, and often generates non-optimal feature sets in the presence of redundant

features [43].

Support Vector Machine (SVM) is a supervised learning algorithm for classification

and regression analysis. SVMs determine a decision boundary with maximum margins

between the data sets of the two classes [25]. SVMs are discussed in further detail in

Section 2.4.1.

A feature ranking method proposed by Guyon, et al. utilizes SVMs based on Recursive

Feature Elimination (RFE) [25]. RFE is a backwards feature elimination procedure used

for feature ranking [25]:

1. Train the classifier (SVM - Algorithm 4)
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2. Compute ranking criterion for all features, (wi)2

3. Remove feature with smallest criterion

The SVM-RFE feature selection produces a feature ranking based on the weights of the

SVM classifier [25]. The weights of the decision function of an SVM are only a small

subset of the training samples, referred to as “support vectors” [29]. The weight vector is

determined by a linear combination of the training samples and the non-zero weights are

regarded as the support vectors [15]. The pseudocode for SVM-RFE is shown in

Algorithm 2.

Algorithm 2: SVM-RFE proposed by Guyon et al. [25] ranks features from best to

worst using the recursive feature elimination method.
Input: X0 = [x1, x2, ...xk, ...xl]T : Training examples

y = [y1, y2, ...yk, ...yl]T : Class labels

initialize: s = [1, 2, ...n]: Subset of surviving features

Output: r = []: Feature ranked list

1 while s ,NULL do

2 X = X0(:, s): restrict training examples to good feature indices

3 α = SVM-train(X, y): train the classifier

4 w =
∑

k αkykxk: compute the weight vector of dimension length

5 ci = (wi)2,∀i: compute the ranking criteria

6 f = argmin(c): find the feature with smallest ranking criterion

7 r = [s( f ), r]: update feature ranked list

8 s = s(1 : f − 1, f + 1 : length(s)): eliminate feature with smallest ranking

9 return Feature ranked list r
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The Non-correlated Aided Simulated Annealing Feature Selection - Integrated

Distribution Function (NASAFS-IDF) feature selection method uses a distributed spacing

function with the discrimination capability of the feature set as a heuristic for the

collection of a more robust and accurate feature set [14]. NASAFS-IDF is an optimized

feature selection method that maximizes the given heuristic by utilizing a simulated

annealing search [14]. The simulated annealing approach increases the chance of evading

locally optimal solutions [14].

NASAFS-IDF involves dividing the data into a number of bins, determining the

cross-covariance threshold, selecting a feature set randomly, evaluating the heuristic, then

replacing a feature in the set with another random pick from the remaining features and

re-evaluating the heuristic [14]. This process is repeated until a stopping criteria is met,

creating a non-correlated feature set [14].

A fast correlation-based filter (FCBF) solution is proposed by Yu and Liu which uses

information gain to analyze feature redundancy to select features that are relevant and not

redundant [51]. The FCBF algorithm uses symmetrical uncertainty (SU) to determine the

relevance of each feature. SU is defined as [51]:

S U(x, y) = 2
[

IG(x|y)
H(x) + H(y)

]
, (2.2)

where IG is information gain, H is entropy, x and y are features. A feature becomes

relevant if the SU value is greater than a user defined threshold. The threshold is denoted δ

and the correlation between a class C and a feature fi is denoted as S Ui,c [51]. SU values

are between 0 and 1 where the SU value of 0 indicates that two features are independent

whereas an SU value of 1 indicates that the value of X can be completely

predicted by Y [51].

Heuristics are used to determine redundancy of the feature. The feature with the

highest SU value is deemed predominant. A feature is removed if it is found to be

redundant to a more predominant feature. This process is continued until there are no
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features to be removed, ultimately producing the optimal feature subset of the given

data [51]. The pseudocode for FCBF is shown in Algorithm 3.

Algorithm 3: FCBF finds the optimal feature subset data set using the symmetrical

uncertainty value and heuristics [51].
Input: S ( f1, f2, ..., fN ,C): labeled training data set

δ: relevance threshold (user defined)

Output: S best: selected features

1 for i = 1 to N do

2 S Utemp = S Ui,c for fi

3 if S Utemp ≥ δ then

4 add fi to S list

5 Sort S list in descending order

6 fa = firstElement(S list)

7 while fa ,NULL do

8 fb = nextElement(S list)

9 while fb ,NULL do

10 if S Ua,b ≥ S Ub,c then

11 remove Fb from S list

12 fb = nextElement(S list)

13 fa = nextElement(S list)

14 S best = S list

15 return S best
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2.4 Classification Methods

Classification is the process of assigning a label to an observation, whereas detection is

the process of identifying the existence of a condition. Detection can be considered as a

two-class classification problem: target exists or does not exist [60]. Detection can also be

referred to as binary classification [60]. In detection applications, a-priori information

about the desired target is necessary [39]. However, in most applications, the target class

occupies only a small population in the scene, and the background is referred to as

everything except the target in a given scene [35].

The goal of target detection is to maximize the probability of detection while

minimizing the false alarm rate [35]. Many algorithms use a constant false alarm rate

(CFAR) detector to keep the false alarm rate constant at a specific desired level [35]. A

CFAR algorithm provides detection thresholds that are robust to noise and background

variations [60].

Detection algorithms generally compare an observation to a known spectral signature,

an expected distribution of signatures or a set of detection rules to classify a given

observation [23]. Detection algorithms such as anomaly detectors (AD) that do not require

prior knowledge determine regions of interest based on the statistically distinct spectrum

of one region from the background [62]. This detection technique only uses the difference

of spectral signatures, therefore, it does not require a-priori knowledge to perform

detection [40]. Examples of AD models are the local Gaussian model, the global Gaussian

mixture model and the global linear mixture model [62]. Other detection methods use

supervised learning and a-priori knowledge of specific signatures or given materials [61].

Spectral detection can be divided into two categories: those that utilize

reflectance-based detection and those that utilize radiance-based detection [3].

Reflectance-based detection involves atmospheric compensation as one of its

preprocessing steps whereas radiance-based detection skips the atmospheric compensation
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and performs noise whitening and normalization during its preprocessing for the detection

algorithm [3]. Hyperspectral detection algorithms that search for a specific target

signature work the best [3]. These types of detection algorithms compare the spectral

signatures from an observation to a specific target signature, giving a measurement based

on their similarity, and comparing the measurements to a threshold to determine the

target’s classification [3]. A binary classifier classifies each item as a target or a non-target

providing the probability of detection and the probability of false alarm [60]. Setting

different thresholds on the measurement provides different probabilities of detection and

false alarm [3].

2.4.1 Current Classification Methods.

The No Free Lunch Theorem in [19] states that there is no overall best classifier. If one

classifier outperforms another in a particular set of circumstances, it is because of the fit to

that particular pattern recognition problem, not because of the general superiority of the

classifier. The decision on which algorithm to use is based on aspects such as prior

information, amount of training data, cost or reward functions and data distribution [19].

ANNs, such as, radial basis function networks, multilayer perceptrons, and support

vector machines, can be utilized as a classifier when trained with a training set

representative of the data set to be classified [29]. A typical ANN processes the training

set through the network while calculating the error between the actual and desired outputs,

updating the network until a desired error threshold is met.

A RBF network typically has three layers, to include the input layer, one hidden layer

and an output layer [29]. The input layer consists of input nodes that connect the network

to the environment. The number of input nodes used corresponds to the number of

features or dimensions of the inputs [29]. The second layer, referred to as the hidden layer,

is made up of nodes that apply a nonlinear transformation to the input, transforming it to
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the feature space [29]. The output layer is a linear combination of the transformed inputs

and neuron parameters [29].

A network of multilayer perceptron contains neurons with differentiable activation

functions [29]. The network is made up of one or more hidden layers. The number of

hidden layers is determined by the user. The multilayer perceptron network generally has

a high degree of connectivity [29]. An architectural graph of a multilayer perceptron can

be seen in Figure 2.3.

Figure 2.3: Architectural graph of a multilayer perceptron with two hidden layers. The

input signal comes in from the left to the square nodes to the input layer, pink circular nodes

are the hidden nodes that the information from the inputs get passed to. Blue nodes depict

the output nodes. The arrows show the flow of the forward pass, showing that this is a fully

connected perceptron. The back-propagation is not shown on this graph for simplicity.

Training of a back-propagation multilayer perceptron can be segmented to two major

phases [29]. The first phase is the forward pass, where an input is passed through the
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network and is acted upon by the network to produce a specific output. The second phase

is the back propagation, where the error is calculated by comparing the output and the

desired response, and is propagated back through all layers of the network, making

adjustments to the weights as necessary [29].

A support vector machine (SVM) is a binary classification method that constructs an

optimal hyperplane as a decision boundary [29]. SVMs are designed as a feed-forward

network with a single hidden layer containing nonlinear properties [16]. The hyperplane is

built to maximize the margin of separation between the two classes [29]. The optimality

of a SVM is accomplished using convex optimization [29]. The support vectors used in

SVMs are a subset of input data points extracted from the learning algorithm also referred

to as a kernel method [29]. Algorithm 4 shows the training executed in an SVM.

Algorithm 4: Training weights of an SVM given a data set and corresponding

label [25]
Input: x1, x2, ...xk, ...xl: Training samples

y1, y2, ...yk, ...yl: Class labels

1 minimize over αk:

2 J = (1/2)
∑

hk yhykαhαk(xh · xk + λδhk) −
∑

k αk

3 subject to:

4 0 ≤ αk ≤ C and
∑

k αkyk = 0

Output: parameters αk

In Algorithm 4, the summations are accomplished over all training samples xk. The

Kronecker symbol represented with, δhk, is either 1 if h = k or 0 otherwise. Positive

constants λ and C are user defined to ensure convergence even when a problem is

non-linearly separable. A small λ (of the order of 10−14) is used to ensure numerical

stability. After the training in Algorithm 4, a decision function D(x) is made [29]:
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D(x) = w · x + b, (2.3)

with

w =
∑

k

αkykxk, (2.4)

and

b = 〈yk − w · xk〉. (2.5)

The weight vector w is a linear combination of training samples where most weights αk

are zero [25]. The bias value b is an average over marginal support vectors, which are

greater than zero and smaller than a set parameter C [25].

2.5 Clothing Detection and Classification

Clark [14] presents a feature selection method, NASAFS-IDF, described in section

2.3.1. To test the algorithm, he uses NASAFS-IDF versus other feature selection methods,

to discriminate 12 different classes of textiles based on their spectral signature collected

across the 900nm - 2450nm wavelength range under several noise realizations.

Haran collects several diffuse reflectance measurements of polyester and cotton and

characterizes the spectral features in the short-wave infrared spectrum (wavelengths

between 0.9 and 2.5 microns) [28]. He identifies a set of unique spectral fingerprints in the

SWIR region that allows him to distinguish cotton and polyester fabrics regardless of their

visible color or texture [28].

Additionally, there has been research for developing fabrics with reduced reflectance

signatures in the visible and near infra-red spectral bands in [22]. Frankel et al. is able to

modify the NIR signature of the base fabric by the inclusion of nano and micro particle

additives to the original fabric in order to enhance concealment [22].
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Another emerging area exploiting hyperspectral data of textiles is the detection of

defects. The quality control of fabrics is a vital step for the modern textile industry, as

defects can have a large impact on grading and costs of the final product [47]. Zhou et

al. [66] presents a fabric detection scheme using sparse dictionary reconstruction. In this

study, fabric defects are regarded as local anomalies against a homogeneous texture

background [66]. Kumar et al. [48] presents an approach for automated inspection of

textured materials for detection of defects using Gabor wavelet features.

2.6 Fabric Reflectance and Transmittance

Various manufacturing processes exist for creating textiles. Textiles may be

production-line manufactured where thousands at a time are made of the same color and

material type. Textiles could be manufactured by weaving threads in a specific pattern.

Other methods include knitting, matting, and compression of fibers into a piece of fabric.

Figure 2.4 shows an example of the reflectance of cotton and polyester fabric samples

across the VIS-NIR-SWIR spectrum.

The study of fabric reflectance can be traced to the 1960s when a study using an

interferometer spectrometer was conducted to characterize fabrics by determining the

materials’ surface emissivity [54]. The different types of textiles were imaged at in the

1 um to 15 um wavelength region. Terrain features and ambient conditions in the field had

a large effect on any measurement taken, making it difficult to correlate with the

laboratory emission studies [54].

A more recent study by Herweg et al. [32] incorporates the knowledge that textiles are

dense and opaque at visible wavelengths to the naked eye yet porous enough to allow

sensors to detect a significant amount of energy. This property of clothing allows the

spectral content of backing material to be reflected through the fabric [32]. Herweg et

al. [32] use three types of fabrics as targets on asphalt and grass, with illumination
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Figure 2.4: Normalized reflectance of two sample fabrics: cotton in blue and polyester in

red. Includes normalized reflectance of the VIS through SWIR bands of both fabrics. VIS,

NIR, and SWIR regions are depicted by the double sided arrows.

variations to examine the variability of fabric’s target signature on different types of

backings. Spectral measurements of the fabrics against different backings are collected to

show the variation of these measurements based on the different backing [32].

2.7 Other Related Works in Material Recognition and Fingerprints

Material recognition is a field of study highly explored in computer vision. Liu et al.

in [50] explores the problem of characterizing materials such as glass, metal, fabric,

plastic or wood from a single image of a surface. The authors use a set of features that

capture various aspects of the material’s appearance and propose an augmented Latent

Dirichlet Allocation (aLDA) model to combine these features [50].
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The texture of materials is used for recognizing classes within remote sensing where

the goal is to distinguish between background environments such as water, forest, and

urban areas [12]. Gabor filters were used in a comparative study of several texture features

for remote sensing data [59]. In [65], Zhang et al. use wavelet-based methods such as the

hidden Markov model (HMM) to classify soil textures.

A study by Zhang et al. [64] combines multiple features such as texture and shape

features as well as hyperspectral features for image classification purposes. Each feature

used provides a particular contribution to the overall representation determined by

optimizing the weights in the objective function [64]. Zhang et al. is able to successfully

achieve a low-dimensional representation for an accurate and effective classification [64].

A fingerprint of a material, similar to a human’s fingerprints, is unique to its

corresponding material. Bruce et al. [11] proposes using a derivative operation in the

analysis of hyperspectral signatures. A derivative operation measures the changes of a

function as the input changes [11]. When it is applied to a hyperspectral curve, the

characteristic shape of the contours gives a spectral fingerprint as the locations of the

inflection points and their slopes can provide important information about the spectral

features [11].

2.8 Summary

This chapter reviews studies done in the field of dismount detection and hyperspectral

imaging. An overview of the fundamentals of hyperspectral imaging are presented as well

as some of its applications. The principal theories of feature selection are discussed and a

few common methodologies are presented such as PCA and GRLVQ. Recent efforts in the

clothing detection and classification area are explored to find what has already been

accomplished in this particular field. Studies that engage material recognition and

fingerprinting are also reviewed. The background knowledge and literature review
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determine that an optimal method to fingerprinting fabrics or textiles using feature

selection and classification has not yet been achieved.
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III. Methodology

Recent advances in sensor technology and hyperspectral imagery have

made collecting spectrally high resolution radiance of materials throughout the

electromagnetic spectrum possible [60]. The hyperspectral imaging (HSI) capability

presents the possibility of a variety of material identification and characterization

experiments [8, 24]. Researchers are able to distinguish among different materials more

easily due to each material’s unique spectral signature. These characteristics associated

with hyperspectral imaging make HSI an essential tool for dismount detection.

Hyperspectral data of a person’s skin and clothing are currently being studied in order

to make current dismount detection methods more robust. Past research efforts have

discovered that different textiles can be distinguished from each other using their spectral

signatures [14]. The ability to characterize textiles is highly useful for dismount detection

purposes.

This chapter introduces the methodology used to uniquely identify textiles using their

spectral signatures. In section 3.1, the type of data used is introduced along with how the

data are obtained. The process in which the data sets are analyzed is explained and

justified in section 3.2.

3.1 Data Collection

Spectral reflection measurements are collected using the ASD FieldSpec ® 3 Hi-Res

Spectroradiometer [34]. This instrument has a spectral range from 350nm to 2500nm

which includes the visible (VIS), near infrared (NIR), and short-wave infrared (SWIR)

spectral bands. It has a 1.5m fiber optic cable and provides 2151 channels or features for

every measurement. Each measurement is given as the average of 10 instances.
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A contact probe is used for collecting spectral data of textile samples. The contact

probe is equipped with a broad-band halogen internal illumination source to emulate

natural sunlight. The probe makes complete contact with the samples, minimizing noise

and atmospheric effects in the measurements.

The spectroradiometer is calibrated before taking measurements with the data

acquisition software supplied by ASD Inc [34]. The optimization step calibrates the

spectroradiometer for the specific light source used for a data collect. The halogen light

source within the contact probe is used in all data collections for this thesis. The white

reflectance calibration collects absolute reflectance across 350nm - 2500nm using a

spectralon panel, to produce reflectance values between 0 and 1.

Due to the porous nature of textiles, a fraction of the light source will penetrate through

the existing pores of the sample and not reflect back [31]. In order to minimize this

occurrence, the textile samples are backed with themselves by folding the material in half

three times. A black reflectance panel is placed behind the folded textiles to standardize

collection procedures. The laboratory setup of the data collection is shown in Figure 3.1.

Figure 3.1: Laboratory setup of reflectance data collection. The green, 100% cotton shirt

sample, contact probe, and black calibration panel used are labeled.
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Figure 3.2 shows an example of a textile reflectance measurement collected by the

spectroradiometer. Each line color represents an instance of the reflectance of green,

100% cotton. These measurements are collected in 5 separate collection cycles, in 5

different regions of the textile. Twenty instances are collected in each region, totaling 100

instances per textile. The reflections from different regions are used to prevent over-fitting

to one specific region of a textile during data analysis.

Figure 3.2: 100 Instances of Cotton Reflectance from ASD FieldSpec ® 3 Hi-Res

Spectroradiometer using a contact probe, with a black reflectance panel as backing. Each

instance is the average of 10 consecutive samples.

The data set used in this thesis consists of 8 different types and blends of textiles, as

well as paint chip samples of 32 different colors. The data sets can be separated into three

types (color, composition, and uniqueness). The paint chips used for obtaining the color

data set can be seen in Figure 3.3. The colors consists of 8 different color schemes (red,
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orange, yellow, green, turquoise, blue, indigo, and purple) each with four different

shadings. The shading is dependent on the amount of gray that is added to the original

color [9]. The textile samples used are listed in Table 3.1 with their matching colors. The

composition data set consists of the reflection data of the pristine textile. In order to create

separation between the same makes of textiles, a group is kept in its pristine state, whereas

the other groups are washed and dried using different methods. A Kenmore® high

efficiency washing machine is used on its warm cycle with a Tide® original laundry

detergent. A Kenmore® standard dryer is used on its medium heat, 40 minute tumble dry

cycle. The uniqueness data set is comprised of these modified textiles.

Figure 3.3: Color chip samples used in feature selection for visible spectrum. From left to

right, the color schemes are: purple, indigo, blue, turquoise, green, yellow, orange, and red.

Each color scheme has four shadings, separated by horizontal white lines.

After each data collection, a variety of feature selection and classification problems are

conducted. One problem addresses the classification of different textile types such as

cotton, polyester, and denim. Another problem focuses on the classification of washed and

pristine versions of the same textile (uniqueness). A separate feature selection method is

employed for each classification problem presented.
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Table 3.1: List of textile materials and colors

Each data set is divided into training and validation sets. The training set is used to

train an ANN for a classification problem, using K-folds cross validation. The validation

data set is set aside for the purpose of testing the ANN model produced. The two sets are

created by randomly shuffling the original data set and dividing the instances into two

buckets of the desired percentage. The division of each of the data sets can be seen in

Table 3.2.

Table 3.2: Separation of training and validation sets for each data set.

Type Training (%) Validation (%)

Color 15 85

Composition 50 50

Uniqueness 50 50
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3.2 Data Analysis

Data analysis consists of three major steps to include preprocessing, feature selection,

and classification. The bulk of the feature selection and classification are completed using

Weka (Waikato Environment for Knowledge Analysis), which is a machine learning

software developed at the University of Waikato, New Zealand [52].

Weka supports numerous data processing tasks such as data clustering, classification,

regression, feature selection and visualization. The feature selection methods available in

Weka include filter and wrapper methods that uses a variety of search methods such as:

best first search, exhaustive search, genetic, random and scatter search. Weka provides

classifiers such as Naive Bayes, SVM, artificial neural network with multi-layer

perceptrons, radial basis function networks, and decision trees.

3.2.1 Preprocessing.

Each sample is normalized to ensure that all data samples are compared on an equal

baseline. Normalizing the data is necessary to prevent unwanted biases during the feature

selection and classification process. The data are normalized using the following

equation [15]:

x′ =
x −min(x)

max(x) −min(x)
(3.1)

where x is the original data, x′ is the normalized data, min(x) and max(x) are the

minimum and maximum values of the data sample.

Preprocessing of the data, to remove outliers and for normalization, is accomplished in

Matlab ®. Matlab ® is also used to format the data sets into a csv file for the ease of data

analysis in Weka.

3.2.2 Feature Selection.

The spectral reflection of 32 different colors samples are used for feature selection in

the visible spectrum. The wavelengths used for feature selection in the VIS spectrum are

350nm to 750nm. The spectral reflection data of the pristine textile samples are used in
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feature selection for material (composition) classification. Fabric color is classified

separately, therefore, only the reflection data of the NIR and SWIR bands are used in

efforts to classify material composition.

Both the VIS and NIR/SWIR data sets are processed with the SVM-RFE feature

selection method discussed in Section 2.3.1. SVM-RFE is designed to rank all existing

features from best to worst [25]. SVM-RFE is implemented to the data sets following the

pseudocode shown in Algorithm 2. Each training data set is normalized, given

corresponding class labels, and processed stepping through every feature recursively, in

Weka. The input to the algorithm is a data set that contains f features with labeled classes.

The output of the algorithm is a ranked feature list as processed by RFE. The top 4

features of the VIS spectrum and the top 5 features of the NIR/SWIR spectrum are

selected from each ranked feature list. The specific results of these feature selections are

discussed in further detail in Chapter 4.

Color and composition classification of textiles provides discrimination between colors

and types of textiles. However, these features alone are inadequate for fingerprinting of

textiles. A third set of features is selected for each textile class to uniquely distinguish

between textiles of the same composition. A universal feature set for discerning color,

composition, and uniqueness is difficult to obtain, therefore, the feature selection process

is done separately in stages for each textile composition. Since feature selection is done

for each composition, the fast correlation-based filter method (FCBF) [51] described in

Section 2.3.1 is used instead of the computationally expensive SVM-RFE. FCBF is a

filter-type method which identifies relevant features as well as redundant features without

pairwise correlation analysis between all relevant features [51]. The FCBF feature

selection method as shown in Algorithm 3 is implemented on each data set of as single

textile composition with its different versions (washed, dried), in Matlab ®. The input of

the FCBF algorithm is a data set of f features with labeled classes and a predefined
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threshold, δ. The algorithm outputs an optimal feature set after eliminating redundant and

irrelevant features.

3.2.3 Classification.

An artificial neural network (ANN), made up of multilayer perceptrons, is used to

classify the data in this research. The original data sets are processed to have only the

features that are selected by SVM-RFE or FCBF. The back propagation algorithm

explained in Section 2.4.1 is used to train each of the ANNs. An example of an artificial

neural network is shown in Figure 3.4 with five features as inputs, a single hidden layer

and the output of 8 textile classes.

Figure 3.4: Example of an ANN (composition classification): green nodes are inputs with

wavelength numbers, red nodes are in the hidden layer, yellow nodes are the output nodes,

and purple labels on the right show the class the output node represents.
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All nodes in the ANN use the sigmoid function as the activation function defined

by [27]:

S (x) =
1

1 + exp−x , (3.2)

where x is the input value from the data to the sigmoid function. A graph of a sigmoid

function can be seen in Figure 3.5.

Figure 3.5: Sigmoid function where x is the input value, maps to the corresponding S (x) of

the activation function.

The number of nodes in each hidden layer n in the ANN is determined by [52]:

n =
N + C

2
, (3.3)

where N is the number of features or inputs and C is the number of classes or outputs. The

specific parameters for training each ANN are further described in Chapter 4.

Each ANN used in this thesis is trained using the K-fold cross validation method [15].

K-folds cross validation divided a training data set into K equal and disjoint sets. A

classifier (ANN) is trained using the K − 1 disjoint subsets and tested on the remaining set.

This process is repeated K times, each using a different K − 1 subsets for training. The

default value of K, 10, is used for all training of classifiers. Epochs refer to the number of

iterations for a given training cycle. The optimal epoch number for each classifier is
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determined by performing an exhaustive number of iterations and selecting the epoch

where the error levels off. This process is demonstrated in Section 4.1.

The classification performance of an ANN for a multi-class problem is calculated using

an equal weighted accuracy (EWA) measure. EWA computes the average of the

accuracies for each class by [16]:

1
N

N∑
i=1

correctly classified instances of Class i
size of Class i

, (3.4)

where i is the numeric class index and N is the total number of classes in the given

multi-class problem. In the case of binary classification, the accuracy is calculated by [53]:

True Positive + True Negative
True Positive + False Positive + True Negative + False Negative

. (3.5)

An example binary classification contingency table is shown in Table 3.3, where the

positions of true positive (TP), false positive (FP), true negative (TN), and false negative

(FN) are depicted. FN rates and FP rates are also calculated as performance measures

by [53]:

FN rate =
FN

FN + TP
(3.6)

FP rate =
FP

FP + TN
(3.7)

Table 3.3: Example contingency table of a binary classification showing locations of TP,

FP, TN, and FN. A and B are arbitrary classes.

Classified As

A B

Tr
ue

C
la

ss

A True Negative False Positive

B False Negative True Positive
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3.2.4 Textile Fingerprinting Model.

The assumed textile fingerprinting model could be utilized as described in the

following process. The model is built upon three different sets of features and ANNs. This

process works with the assumption that the detectors already have a visual contact of the

FOI and that the textile library has access to samples of the same textile type as that of the

FOI. The initial screening of the FOI collects the features (wavelengths) necessary for

color and composition classification. Two existing ANNs, each already trained for color

and composition classification, processes the collected features, from the screening of the

FOI to determine the FOI’s color and composition. Depending on the color and

composition classification of the FOI, the features needed for reacquisition of the FOI

vary, consisting of one feature (wavelength) in the VIS spectrum for color discrimination

and 2 to 4 features (wavelengths) in the NIR/SWIR for the uniqueness classification (next

and last phase of fingerprinting) of a known textile. The secondary screening collects the

information from the FOI for these features necessary for fingerprinting of the FOI. When

the visual contact is compromised (i.e. the FOI goes into a building), a new ANN is

trained using samples from the textile spectral library and the features collected from the

secondary screening to reacquire the FOI. The newly trained ANN is then used to identify

the FOI from the dismounts coming out of the building in the reacquisition stage. An

example of the textile fingerprinting model is illustrated in Figure 3.6.

The textile fingerprinting model can be seen as a process of elimination, the last step

being identification, using one versus all classification. A one versus all classification can

be treated as a detection or binary classification problem, where the first class is the FOI

and the second class is all other classes (textiles). The performance of a model is measured

by the ability to identify a FOI. The model is trained with a random assortment of sample

textiles to detect the FOI amongst a group of other textiles. The accuracy and performance

of each stage of the textile fingerprinting model will be discussed in Chapter 4.
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Figure 3.6: Flowchart of the textile fingerprinting process. First a potential target is

identified and visual contact with target is established. Initial screening collects features for

classification of color and composition. Secondary screening collects features according to

the previous classification. An ANN is built to uniquely identify an FOI, when visual

contact is disrupted, from features collected in the secondary screening. The ANN is used

in the reacquisition screening for identification of the FOI.
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3.3 Summary

Data collection, preprocessing, feature selection and classification make up the

methodological backbone of this thesis. Spectral reflectance data of textile sample and

color chips are collected using the FieldSpec ® 3 Hi-Res Spectroradiometer [2]. The

visible and NIR/SWIR wavelengths are processed separately, the former for color and

latter for textile composition. SVM-RFE is selected as the feature selection technique for

color and composition classification. A computationally less expensive feature selection

method, FCBF is chosen for textile uniqueness classification. A model for uniquely

identifying (fingerprinting) an FOI is built using the features selected and artificial neural

networks.
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IV. Results

This chapter presents the results of the textile fingerprinting model outlined

in Chapter 3. The three stages (color classification, composition classification, and

textile uniqueness identification) of the fingerprinting process of textiles are discussed in

detail. Three distinct reflectance data sets are collected: paint chips, pristine textiles, and

altered textiles (washed and dried). Feature selection and classification (using ANNs) are

implemented on all data sets for each stage of the fingerprinting model. The textile

fingerprinting model, as illustrated in Figure 3.6, processes an FOI by classifying the color

and composition of the FOI followed by collecting secondary data of the FOI. The

reacquisition of the FOI consists of modeling a separate ANN for uniquely identifying the

FOI. The feature selection and classification methods pertinent to each step are explained

in the following sections.

The data collected, methodology implemented, and the results for color classification

are discussed in Section 4.1. Section 4.2 discusses the pertinent information for

composition classification and its results. The details regarding the textile uniqueness

identification are presented in Section 4.3, and the overall performance of the

fingerprinting model is reported in Section 4.4.

4.1 Color Classification

The hyperspectral reflectance data of each paint chip depicted in Figure 3.3 is collected

with a ASD FieldSpec ® 3 Hi-Res spectroradiometer [2] using a contact probe. Each

measurement is collected from 350nm - 2500nm with 1nm resolution providing 2151

features. Feature selection in the visible wavelengths for color classification is

accomplished with 351 features from 350nm - 700nm.
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Figure 4.1: Number of features selected vs. mean squared error of classification of color

with an ANN trained with the selected features. As number of features used increases, the

MSE decreases.

There are eight distinct groups of colors in the ‘color data set’: blue, green, indigo,

orange, purple, red, yellow, and turquoise. Each color group contains four different levels

of shading (labeled by letters a, b, c, d) which gives 32 color classes. The shading is

linearly divided between the four levels, where the ‘a’ class has the least amount of gray

added and the ‘d’ class has the most amount of gray added. Features, for color

classification, are selected from the entire data set using a Support Vector Machine based

on the Recursive Feature Elimination (SVM-RFE) method in Weka.

The SVM-RFE algorithm ranks the features, best to worst, allowing the user to select

the number of desired features. To determine the optimal number of features, an artificial

neural network is trained and tested iterating from the greatest to least significant feature,

increasing the number of features after each iteration. Figure 4.1 shows the relationship of

the number of features versus the MSE; as the number of features increases, the MSE

decreases. The top four features (530nm, 481nm, 588nm, and 430nm) are selected for
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Figure 4.2: Selected features for color classification and the average reflectances for the

eight a-class colors. The solid vertical black line represents the wavelength selected as a

feature (430nm, 481nm, 530nm, 588nm).

color classification based on the results shown in Figure 4.1. The chosen wavelengths are

depicted in solid black vertical lines, along with the average reflectances of the a-class

colors in Figure 4.2.

Training of the artificial neural network is accomplished with the selected feature of the

color data set. Relevant parameters used for the training of the ANN are reported in

Table 4.1. The ANN is structured where the four features are the inputs, a single numeric

output that allows distinction between 32 classes, and a single hidden layer is used to

minimize the computation complexity of the back propagation algorithm. The number of

neurons used in the hidden layer is calculated from Equation (3.3), and the Sigmoid,

shown in Equation (3.2), is the activation function. The learning rate and momentum
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Table 4.1: Parameters for the color classification ANN.

Parameter Value

Inputs 4

Outputs 32

Hidden layers 1

Neurons in hidden layer 18

Activation function Sigmoid

Learning rate 0.3

Momentum 0.2

Epochs 150

K (cross validation) 10

Figure 4.3: Illustrates the MSE for the first 300 epochs of the artificial neural network for

color classification. The MSE gradually levels off after 150 - 200 epochs.
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parameters, which dictate the amount of change to the weights during each iteration, are

0.3 and 0.2. An exhaustive number of training iterations are completed to determine an

optimal number of epochs. Figure 4.3 indicates that 150 epochs is adequate for this

particular training set. The ‘K’ parameter, of Table 4.1, refers to the number of K-folds

cross validations performed.

The color classification performance is evaluated using a reserved validation data set

that the artificial neural network is not permitted to use for training. Figure 4.4 shows the

classification results of the validation data set. Each of the 32 color classes are designated

by numeric class value of 1 through 32. The sample numbers associated with a numeric

class are determined by:

(C − 1) × 15 + 1 ∼ (C − 1) × 15 + 15, (4.1)

where C is the numeric class number. For example, the sample numbers corresponding to

class 12 would be samples 166 to 180. Each red dot, shown in Figure 4.4, is the true class

of a sample and each blue star represents the class predicted by the model. As seen in

Figure 4.4, all samples are classified into their corresponding numeric class, giving the

color classification process 100% accuracy calculated by Equation (3.4). This result is

expected due to the fact that these color classes are linearly separable.

The features associated with the 32 class distinction process are necessary for initial

determination of the FOI’s color. Reacquisition of the FOI is then accomplished based on

the base color (8 class) which requires only one feature for discrimination. A single

feature is selected to discriminate between the classes (a,b,c,d) of each group using

SVM-RFE. The chosen feature for each color group is recorded in Table 4.2, which is

later used in the final textile identification process.
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(a) (b)

Figure 4.4: The left graph (a) shows the classification results of the validation color data set.

The y-axis represents the number coded color class and the x-axis represents the sample

number. Graph (b) shows the zoomed in version of the green box of graph (a) for the

classification for class number 12 and 13.

Table 4.2: Selected feature for within-class color classification

Color Wavelength(nm) Color Wavelength(nm)

Red 636 Blue 492

Orange 587 Indigo 453

Yellow 563 Turquoise 500

Green 536 Purple 422

4.2 Composition Classification

The textile samples are collected from 750nm - 2500nm, with 1nm resolution, for

composition feature selection and classification. The pristine textile data set is processed

with the SVM-RFE method, where the optimal feature set is determined by training and
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testing an ANN with an increasing number of features, starting with the most significant

feature. Figure 4.5 depicts the effect of increasing the number of features on the MSE of

the composition classification.

Figure 4.5: Number of features selected vs. mean squared error of composition

classification by an ANN trained with selected features. As the number of features

increases, the MSE decreases. The spike at 2 features can be explained by the presence

of noisy samples or outliers since this is not an average over multiple trials.

The top five ranked features reported from the SVM-RFE method are selected for

composition classification due to the results shown in Figure 4.5. A global feature set of

the composition classification for the textiles used in this thesis consist of five features:

1104nm, 1263nm, 1324nm, 1647nm, 2242nm. The selected features (solid black vertical

lines) are shown in Figure 4.6 along with the average reflectance measurements of each

pristine textile sample.

An ANN is trained for the classification of textile composition using the parameters

listed in Table 4.3. The activation function, learning rate, and momentum parameters used

are the same as those in the color classification model. The composition classification

ANN accepts five features as inputs, contains seven neurons in a single hidden layer, and

has a numeric output that allows distinction between eight output classes. The
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Figure 4.6: Selected features for composition classification and the average reflectance

measurements of the eight textiles. The solid black vertical lines represent the features

(wavelengths) selected: 1104nm, 1263nm, 1324nm, 1647nm, 2242nm.

classification performance, evaluated by testing the trained ANN with a validation data

set, is reported in the confusion matrix shown in Table 4.4. The 100% accuracy

classification result, calculated with Equation (3.4), for the textile composition

classification is not surprising since this is easily explained by the small data set of only

eight textile classes, which are separated by large margins in the features selected by

SVM-RFE. It can be seen in Figure 4.6 that two of the selected features (1256nm and

1324nm) are able to linearly separate a bulk of the textile classes.
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Table 4.3: Parameters for the composition classification ANN.

Parameter Value Parameter Value

Inputs 5 Learning rate 0.3

Outputs 8 Momentum 0.2

Hidden layers 1 Epochs 500

Neurons in hidden layer 7 K (cross validation) 10

Activation function Sigmoid

Table 4.4: Confusion Matrices for Composition Classification. The left matrix shows

classification results from the training and the right matrix shows results from the validation

data set. Both classifications result in a 100% accuracy. Each letter corresponds to a

textile composition type (A: 100% cotton, B: 100% polyester, C: 100% cotton-denim,

D: 100% nylon, E: 17% cotton 83% poly, F: 30% cotton 70% poly, G: 61% cotton 34%

poly 5% spandex, H: 88% cotton 12% nylon). The diagonals correspond to the accurate

classifications. As seen in both the training and testing results, there are no misses or false

alarms for the classification of textile composition.

Training

Classified As

A B C D E F G H

Tr
ue

C
la

ss

A 50 0 0 0 0 0 0 0

B 0 50 0 0 0 0 0 0

C 0 0 50 0 0 0 0 0

D 0 0 0 50 0 0 0 0

E 0 0 0 0 50 0 0 0

F 0 0 0 0 0 25 0 0

G 0 0 0 0 0 0 50 0

H 0 0 0 0 0 0 0 50

Testing (Validation)

Classified As

A B C D E F G H

Tr
ue

C
la

ss

A 50 0 0 0 0 0 0 0

B 0 50 0 0 0 0 0 0

C 0 0 50 0 0 0 0 0

D 0 0 0 50 0 0 0 0

E 0 0 0 0 50 0 0 0

F 0 0 0 0 0 25 0 0

G 0 0 0 0 0 0 50 0

H 0 0 0 0 0 0 0 50
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4.2.1 Feature Selection Comparison.

To further evaluate the performance of the five feature global set, the SVM-RFE feature

selection method is compared with other existing methods: ReliefF [42], FilterSubsetEval

with best first search (BFS) [52], and WrapperSubsetEval with BFS [52]. The top five

features are selected from each feature selection method, unless a smaller subset of

features is returned by the algorithm. The selected features are displayed in Table 4.5 as

well as the classification accuracy, based on an ANN that is trained and tested with the

corresponding feature set.

Table 4.5: The features, accuracies, and runtime of the different feature selection methods.

Four feature selection methods are tested by training and testing an ANN with the selected

feature set. The accuracies reported are calculated with samples correctly classified as that

class. Runtime is specific to a system with an Intel Core i7-3610M 2.4 GHz processor.

Method Features (nm) Accuracy (%) Runtime (sec)

SVM-RFE 1104, 1263, 1324, 1647, 2242 100 13048

ReliefF 828, 827, 829, 826, 825 86 123

FilterSubsetEval 1421 52 13

WrapperSubsetEval 1235 57 392

As discussed in Section 2.3.1, ReliefF generates non-optimal feature sets with

redundant or highly correlated features [42]. The ANN trained with features selected with

ReliefF returns an 86% accuracy. This result may be explained by the fact that the ReliefF

algorithm returns a group of consecutive features, as the algorithm uses nearest neighbor

comparisons when selecting features and does not remove redundant features.

FilterSubsetEval evaluates the worth of a subset of features by considering the

individual predictive ability of each feature along with the degree of redundancy between

53



them [52]. WrapperSubsetEval evaluates feature sets by using a user defined learning

scheme, BFS [52]. Cross validation is used to estimate the accuracy of the learning

scheme for a set of attributes. Both filter and wrapper methods use BFS to find subsets

which searches the space of features by a greedy hill-climbing method. However,

hill-climbing algorithms are often subject to local minima or maxima [15]. The filter and

wrapper methods combined with BFS return a single wavelength as the optimal subset of

features, which may be due to the hill-climbing nature of the search algorithm. An ANN

is trained with the selected feature of each method, and the performance of each model is

verified with a validation data set, calculating the equal weighted accuracy of the outputs.

The accuracies are reported in Table 4.5 as 52% and 57%. As expected, classification

systems with a single feature result in unsatisfactory accuracies, performing only slightly

better than random guessing.

The runtime of each algorithm is also used to compare the performance of each feature

selection method. Runtime is used as a relative measure of performance as the runtime

will be different for every system used. The reported runtimes are specific to a system

geared with an Intel Core i7-3610M 2.4 GHz processor. Of the four feature selection

methods, the SVM-RFE has the longest runtime, exceeding 3 hours, whereas the other

methods are completed under 10 minutes. The extended runtime of SVM-RFE results

from its recursive nature as it trains the SVM repeatedly. However, since the feature

selection for textile composition is completed off-line and only needs to be run once, the

runtime of an algorithm can be neglected, making the accuracy performance more

important than the computation simplicity. Disregarding the runtime, SVM-RFE

outperforms all three feature selection algorithms, which could be caused by the

complexity of the more sophisticated selection algorithm. Also, the performance of the

four feature sets were tested only with ANNs, which may not have given an unbiased

evaluation of each selection algorithm.
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4.3 Textile Uniqueness Classification

Each sample of the same make (i.e. 100% cotton) is divided into four sections and

treated with various combinations of machine washing, machine drying, and air drying.

Four classes are created for each textile group and are labeled as: pristine, washed and air

dried 5 times, washed and machine dried 5 times, and washed and machined dried 20

times.

The eight textile groups are processed separately by the fast correlation-based filter

(FCBF) in Weka. FCBF is used for feature selection of textile uniqueness classification

due to the fact that the algorithm is less complex and faster to implement. Processing

every single textile type with SVM-RFE is computationally expensive and timely. The

FCBF feature selection algorithm returns a small subset of optimal features, unlike the

SVM-RFE; therefore, the resulting subset is used as the optimal feature set. For example,

Figure 4.7 illustrates the location of the selected features relative to the textile reflection

signature of 100% cotton. The selected features for the other seven textile groups can be

found in Appendix A. The wavelengths selected for each textile group are presented

together in Table 4.6.

The subset of optimal features found by FCBF varies from 2 to 4 features, depending

on the textile make. The different number of optimal subsets could be explained by the fact

that the same threshold was used to determine the relevance of each feature for all textile

types. The number of features in the optimal set is different for each textile make because

the FCBF algorithm may deem more features relevant for one textile make than another.

Table 4.7 shows the parameters used when training the artificial neural networks for

textile identification. Inputs of each ANN vary by the number of features used, f , for each

textile group, as well as the neurons in the hidden layer, based on Equation (3.3). The

learning rate, momentum and number of K cross validations are kept at the default values

set by Weka: 0.3, 0.2, and 10. A sigmoid is used as the activation function, and the
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Table 4.6: Features selected for each textile group by FCBF, using four unique versions of

each textile.

Textile Type Features(nm)

100% cotton 1271 1830 2292 1611

100% polyester 1333 2346

100% cotton-denim 890 1427 1829 2020

100% nylon 1213 1727

17% cotton 83% poly 800 1353 1907 2345

30% cotton 70% poly 1093 1666

61% cotton 34% poly 5% span 816 1426 1875 2004

88% cotton 12% nylon 1052 1404 1940

number of epochs is determined as previously discussed in Section 3.2.3. An ANN is

trained with half of the data set and validated with the other half. The performance of the

classification of the validation data set can be seen for each textile group in Table 4.8. For

the simplicity of the confusion matrices, each textile group’s classes are designated by

letter, A, B, C, and D, where group A is the pristine textiles, B is the textiles washed and

air dried 5 times, C is the textiles washed and machine dried 5 times, and D is the textiles

washed and machine dried 20 times. The overall validation equal weighted accuracy,

calculated as described in Equation (3.4), of textile uniqueness classification is reported in

Table 4.8, which averages to 95%.
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Figure 4.7: Selected features shown with black solid vertical lines, for the identification of

100% cotton and the average of each version of the 100% cotton textile (1271nm, 1830nm,

2292nm, 1611nm).

Table 4.7: Parameters for the textile uniqueness identification ANN.

Parameter Value

Inputs f

Outputs 4

Hidden layers 1

Neurons in hidden layer f +4
2

Activation function Sigmoid

Learning rate 0.3

Momentum 0.2

Epochs 500

K (cross validation) 10
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Table 4.8: Confusion matrices for each textile uniqueness classification for the validation

data set, classified by an ANN. The rows correspond to the true class and columns indicate

classification results. Each version of textiles is labeled by A-pristine, B-washed, air

dried × 5, C-washed, machine dried × 5, D-washed, machine dried × 20. Accuracies

are calculated with EWA and are boxed.

Classified As

Type/Accuracy A B C D

Tr
ue

C
la

ss
A 50 0 0 0

100% cotton B 0 50 0 0

C 0 0 50 0

100% D 0 0 0 50

Classified As

Type/Accuracy A B C D

Tr
ue

C
la

ss

A 50 0 0 0

100% poly B 0 50 0 0

C 0 0 50 0

90% D 18 0 0 32

Classified As

A B C D

Tr
ue

C
la

ss

A 50 0 0 0

100% cotton B 0 29 0 21

denim C 0 0 50 0

89.5% D 0 0 0 50

Classified As

A B C D

Tr
ue

C
la

ss

A 50 0 0 0

100% nylon B 0 50 0 0

C 0 11 39 0

94.5% D 0 0 0 50

Classified As

A B C D

Tr
ue

C
la

ss

A 50 0 0 0

17% cotton B 0 50 0 0

83% poly C 11 0 39 0

94.5% D 0 0 0 50

Classified As

A B C D

Tr
ue

C
la

ss

A 25 0 0 0

30% cotton B 0 50 0 0

70% poly C 0 0 50 0

100% D 0 0 0 25

Classified As

A B C D

61% poly

Tr
ue

C
la

ss

A 50 0 0 0

34% cotton B 0 46 0 4

5% spandex C 0 0 50 0

98% D 0 0 0 50

Classified As

A B C D

Tr
ue

C
la

ss

A 48 0 0 2

88% cotton B 0 50 0 0

12% nylon C 0 0 50 0

99% D 0 0 0 50
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4.4 Textile Fingerprinting Model Performance

To test the overall performance of the model built for textile fingerprinting, three

fabrics of interest (FOIs) are selected from the existing library of textiles (five times

washed and machine dried versions of 100% cotton, 100% polyester, and denim).

Measurements of three new FOIs, never incorporated by any feature selection or ANN

training process, are added to the existing textile spectral library to act as possible

confusers. These additional textile samples are depicted in Figure 4.8. The respective

reflectance measurements of the additional textiles can be found in Appendix B.

(a) (b) (c)

Figure 4.8: The first picture (a) shows a green 100% cotton shirt, washed, machine dried,

and worn for 2 years. The middle (b) shows a purple 100% polyester shirt, washed, machine

dried, and worn for 1 year. The last picture (c) shows a denim, 100% cotton jean, washed,

machine washed, and worn for 3 years.

The four visible wavelengths and five NIR/SWIR wavelengths of all three FOIs are

collected for classification by ANNs trained specifically for color and composition

discrimination. When evaluated by the color and composition classification steps, the

FOIs are classified as shown in Table 4.9. All color and composition classifications

achieved a 100% accuracy.
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Table 4.9: The true class and color and composition classification of the three FOIs. Each

FOI is classified by the color discrimination ANN and composition discrimination ANN.

Truth Classified As

FOI Color Composition Color Composition

1 green 100% cotton green 100% cotton

2 red 100% polyester red 100% polyester

3 blue 100%cotton - denim blue 100%cotton - denim

Two distinct data sets are created for the purpose of training and testing of the one

versus all textile fingerprinting ANN for each FOI. The sample allocations are shown in

Table 4.10. The 50 FOI samples for training and testing are separated into two groups

randomly, therefore making the two data sets entirely different, without overlap. The 400

non-FOI samples for training consist of two textiles of the same composition of the FOI,

and two randomly selected textiles of a different type than the FOI. For example, FOI 1 is

trained with the FOI 1 samples, the pristine 100% cotton, the 100% cotton washed and

dried 20 times, the 88% cotton 12% nylon textile, and the 100% polyester textile. The

1050 non-FOI samples for training consist of all 32 textiles from the spectral library.

After an FOI is classified to a color and composition, it is uniquely identified. The

wavelengths collected for the identification process are different for each FOI and are

shown in Table 4.2 and Table 4.6. For example, if an FOI is classified as green and 100%

cotton, wavelength 536nm for color, and wavelengths 1271nm, 1830nm, 2292nm, and

1611nm for composition are selected for textile uniqueness identification. To test the

performance of the identification process, an ANN is trained to find one FOI from a group

of five textile subjects as described in Table 4.10. The ANN is trained using 10-folds cross

validation (default setting in Weka) in a one versus all approach. This model is then tested
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Table 4.10: Description of training and testing (validation) sets for the textile fingerprinting

model. The non-FOI samples for training include two randomly selected textiles of the

same composition of the FOI, and two randomly selected textiles from the textile spectral

library of a different type of the FOI. The non-FOI samples for testing contains 32 textiles

of the existing spectral library. The 50 FOI samples used in training and testing are two

different sets, randomly divided from a 100 sample pool.

Data Set Sample Allocation

Training 50 FOI

400 non-FOI (4 textile classes)

Testing 50 FOI

1050 non-FOI (32 textile classes)

to find the same FOI from a larger group of 32 subjects. The training and testing

classification results for each FOI are reported in Table 4.11.

The training and testing classification performance statistics are shown in Table 4.12.

FOI 1, 2, and 3 each result in 99.4%, 97.2%, and 98.3% accuracy respectively when tested

with the 32 class testing group. These accuracy numbers are calculated by methods

described in Equation (3.5). However, these seemingly stellar accuracy results are inflated

by the small size of the FOI sample compared to the testing set of 1100 samples. The

testing accuracies are higher than the training accuracies, which is unexpected. This could

be an effect from dividing the FOI samples into two separate 50 sample sets each for

training and testing. Since the FOI samples for training and testing are entirely different, a

higher testing accuracy is feasible.

There are 20 false alarms and 10 misses in the case of FOI 2, even with a 97.2%

classification accuracy. False negative (FN) and false positive (FP) rates calculated by
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Table 4.11: Training and Testing confusion matrices for each FOI, trained with 450 samples

and tested with 1100 samples.

Training

Classified As

FOI1 non-FOI1

Tr
ue

C
la

ss

FOI1 395 5

non-FOI1 3 47

Testing (Validation)

Classified As

FOI1 non-FOI1

Tr
ue

C
la

ss

FOI1 1046 4

non-FOI1 2 48

Classified As

FOI2 non-FOI2

Tr
ue

C
la

ss

FOI2 381 19

non-FOI2 11 39

Classified As

FOI2 non-FOI2

Tr
ue

C
la

ss
FOI2 1030 20

non-FOI2 10 40

Classified As

FOI3 non-FOI3

Tr
ue

C
la

ss

FOI3 386 14

non-FOI3 14 36

Classified As

FOI3 non-FOI3

Tr
ue

C
la

ss

FOI3 1037 13

non-FOI3 5 45

Equation (3.6) and Equation (3.7) show a more in-depth performance review of the one

versus all ANN for FOI fingerprinting. For instance, the training FN rate of FOI 2 and

FOI 3 are at 0.28 and 0.38, which indicates that the FOI is missed at a higher rate than one

out of four.
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Table 4.12: Training and testing classification performance statistics including accuracy,

false negative (FN) rate, and false positive (FP) rate for each FOI. Each statistic is calculated

by methods explained in Section 3.2.3.

Training Testing

Accuracy (%) FN rate FP rate Accuracy (%) FN rate FP rate

FOI 1 98.2 0.06 0.01 99.4 0.04 0.003

FOI 2 93.3 0.28 0.05 97.2 0.20 0.02

FOI 3 93.7 0.38 0.04 98.3 0.11 0.01

4.5 Summary

This chapter reviewed the results of two feature selection methods, SVM-RFE and

FCBF, to distinguish between color, composition and finally uniquely classify

(fingerprint) textiles. A neural network at each stage of the identification process is

trained, using the features selected by the two methods. The textile fingerprinting model is

able to classify 32 different colors, 8 types and blends of textiles, and identify between 4

versions of each textile. The overall performance of the fingerprinting model is tested by

three FOIs from the existing textile spectral library with additional samples never seen by

the model to act as confusers.
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V. Conclusion and Future Work

The technology for identifying a dismount has numerous applications such as search

and rescue, surveillance, and security purposes. Traditional dismount detection and

identification efforts have included skin detection and thermal imaging [3, 57]. Although

clothing is not an innate biological feature of a dismount such as skin, iris, fingerprint, and

hair, it can provide more information about a dismount. Accurate textile identification can

aid in developing a more robust dismount detection system. The ability to uniquely

identify textiles relies on distinguishing between different material types and blends.

Hyperspectral data provides characteristics of materials from the visible (VIS) to

short-wave infrared (SWIR) wavelengths, which allows for detection of materials using

their spectral signatures. When using hyperspectral data for material detection, it is crucial

to identify the information that is effective in discriminating between materials. Feature

selection methods are designed to select features of highly discriminating capability

without redundancy or correlation.

The goal of this thesis is to determine a feature selection and classification process that

is ideal for uniquely identifying textiles using their hyperspectral fingerprint. An optimal

feature selection method that returned a global set that could uniquely identify all types

and versions of textiles was not created or discovered; instead, a three step process of

textile fingerprinting is presented.

In this chapter, the summary and conclusions of the work accomplished on uniquely

identifying textiles are presented. Recommendations for future work related to

fingerprinting textiles at the VIS - SWIR wavelengths and improvements that can be made

on the current model are discussed.
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5.1 Summary of Results

This thesis presented a hierarchical model to uniquely identify textiles using material

reflectance information from the VIS, NIR, and SWIR regions. Of the feature selection

methods reviewed and tested, Support Vector Machines with the aid of Recursive Feature

Elimination (SVM-RFE) and fast correlation-based filter (FCBF) are utilized. Artificial

neural networks (ANN) with multi-layer perceptrons (MLP) are trained and tested based

on the selected features to classify the textiles. The SVM-RFE is shown to outperform

other feature selection algorithms such as ReliefF, FilterSubsetEval, and

WrapperSubsetEval with best first search. The MLPs consistently produced better

accuracy classification results as compared to Naive-Bayes, SVMs, and radial basis

function (RBF) networks.

The model developed can be divided into three major parts: color classification,

composition classification, and textile uniqueness classification. Here, composition refers

to the material types and blends of a specific textile sample, whereas uniqueness refers to

the specific version of a textile make. The classification for both color and composition

with validation data sets produce 100% accurate results. The validation results for textile

uniqueness classification within each textile group averages out to give an overall 95%

accuracy as seen in Section 4.3. Over training, or over fitting, is always a concern with

learning algorithms; however, K-folds cross validation is used and textile samples are

measured from different regions of the shirts in efforts to minimize such occurrences.

Depending on the color and composition of a fabric of interest (FOI), a different set of

wavelengths are selected for the textile identification phase. For example, if an FOI is

classified to be yellow and 100% polyester, wavelengths 563nm, 1333nm, and 2346nm are

selected to train an ANN for identifying the FOI. The first wavelength, 563nm,

discriminates between the different shades of yellow, and the two latter wavelengths,

1333nm and 2346nm, discriminate between the different versions of 100% polyester.
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Once the color and composition of a sample are known, the detector is able to identify that

specific sample from a pool of diverse textiles. Tests with three selected FOIs from the

existing spectral library show that this textile fingerprinting model identifies textiles with

99.4, 97.2, and 98.3 percent accuracy within the eight textile class library created in this

thesis.

5.2 Recommendations for Future Work

Future work with the model for uniquely identifying textiles proposed would involve a

field data collect with the use of an actual hyperspectral imager (HSI). All reflectance

measurements collected for training and validating the classifiers were from the ASD

spectrometer with a contact probe that eliminated noise and atmospheric effects.

Collecting HSI data with textiles will allow for the determination of the capability of this

model in the field as well as for identifications of possible confusers that would cause false

alarms in the system. To use the field data to train and test the model, the data will have to

be treated for atmospheric correction and noise suppression.

Another direction the work in this thesis could be further explored is incorporating

more types of fabrics and more versions within a textile group. The current model is only

able to discriminate between eight different types and blends of textiles. This data set of

eight, however, is not representative of the wide variety of possible types and blends of

fabrics in the real world. The inclusion of more types of textiles will serve two distinct

purposes. It will test the robustness of the model already designed, as well as aid in the

determination of adding or eliminating wavelengths from the feature set to better

classification accuracy.

The textile identification phase of the current model is tested at most with four different

versions of the same textile group. To make separations between the versions of textiles,

the samples were washed and dried a different number of times. Introducing different

types of washing and drying machines as well as detergents and fabric softeners to textile
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samples may shed light on new features with more discriminating capability. Further

analysis of the results of the textile uniqueness classification with appropriate station

keeping of samples will also shed light on why the false alarms and misses are made by

the ANNs. Exploration of other feature selection algorithms as well as classification

methods are also recommended for textile uniqueness classification as only FCBF and

ANN were implemented in this thesis.

The question of a single global feature set still remains unanswered. If possible, a true

global feature set would be able to identify an FOI of any class with high accuracy without

jumping through hoops of classifying its color or composition first. A diverse training data

set with more types of fabrics and separation would be a good start to a search for a global

feature set.
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Appendix A: Selected Features for Uniqueness Classification of Textiles

Figure A.1: Selected features shown with black solid vertical lines, for the identification of

100% polyester and the average of each version of the textile (1333nm, 2346nm).

Figure A.2: Selected features shown with black solid vertical lines, for the identification

of denim, 100% cotton and the average of each version of the textile (890nm, 1427nm,

1827nm, 2020nm).
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Figure A.3: Selected features shown with black solid vertical lines, for the identification of

100% nylon and the average of each version of the textile (1213nm, 1727nm).

Figure A.4: Selected features shown with black solid vertical lines, for the identification

of 17% cotton 83% polyester blend and the average of each version of the textile (800nm,

1353nm, 1907nm, 2345nm).
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Figure A.5: Selected features shown with black solid vertical lines, for the identification of

30% cotton 70% polyester blend and the average of each version of the textile (1093nm,

1666nm).

Figure A.6: Selected features shown with black solid vertical lines, for the identification of

61% cotton 34% polyester 5% spandex blend and the average of each version of the textile

(816nm, 1426nm, 1875nm, 2004nm).
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Figure A.7: Selected features shown with black solid vertical lines, for the identification

of 88% cotton 12% nylon blend and the average of each version of the textile (1052nm,

1404nm, 1940nm).
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Appendix B: Additional Fabric of Interest (FOI)

Figure B.1: 100 samples of full reflectance measurement of a green 100% cotton shirt,

washed, machine dried, and worn for 2 years

Figure B.2: 100 samples of full reflectance measurement of a purple 100% polyester shirt,

washed, machine dried, and worn for 1 year.
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Figure B.3: 100 samples of full reflectance measurement of 100% cotton jean, washed,

machine dried, and worn for 3 years.
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